DRAGONCAMING

CONNECT APl DOCUMENTATION
— e NS F EIR - WA ISISETTS———



Contents

Introduction

Glossary

Authentication

API URLs + API Keys

Request and Response

Server to Server Communication

API Requests from Operator to Provider

API Requests Flow

- GetGames() Flow

- GetGames Request

- GetGames Error Response

GetGames() API

- GetGames() Request

- GetGames() Response Example

EnterGame() API

y | v N

- EnterGame() Request

o

- EnterGame() Response Example

—
=

GameExit() API

ﬁ

- GameEXxit() Request

—
N

- GameExit() Response Example

—]
N

|



Contents

CreatePlayer() API

- CreatePlayer() Request

- CreatePlayer() Response

UpdatePassword() API

- UpdatePassword() Request

- UpdatePassword() Response

WalletDeposit() API

- WalletDeposit() Request

- WalletDeposit() Response

WalletWithdraw() API

—1 —0 I‘ Q‘ l —1 - ' —1) -1

- WalletWithdraw() Request 17
- WalletWithdraw() Response 17
WithdrawStatus() API "]§.
- WithdrawStatus() Request 18
- WithdrawStatus() Response 18
WalletTransactionStatus() API f’]g-
- WalletTransactionStatus() Request 19
- WalletTransactionStatus() Response 19

WalletGetBalance() API i 20
- WalletGetBalance() Request 20
- WalletGetBalance() Response 20




Contents

PlayerBets() API

ﬁ

- PlayerBets() Request 21
- PlayerBets{) Response 22
GameHistory() API 23
- GameHistory() Request 23
- GameHistory{) Response 24

GameHistoryAllPlayers() API

d

- GameHistoryAllPlayers() Request

25

- GameHistoryAllPlayers{) Response

26

GrantBonus() API

d

- GrantBonus{) Request

28

- GrantBonus() Response

29




Introduction

As a game provider, our objective is to deliver exceptional games and experiences to our customers
and their players. We would like to see this translate into you integrating our games onto your
casino lobby.

This document provides an insight into our API, known as “Chronos”. It addresses the key interac-
tions and requirements from both DragonGaming™ and your perspective. It provides coverage
over a wide range of services which can be used by you on your welbsites, game-servers, and any
other API services.

You are required to follow a standard integration process; however, this document will provide a
brief overview on several key functions required of our API. This includes integration to Chronos
API, API request details, server-to-server integration, game integration and wallet transactions.

We have a separate integration guide that explains the overall integration spec and also includes
all the various tools, currencies and languages that we support.

Glossary

Operator Anyone that owns / operates a website / frontend.

RGS Remote Game Server (by provider)

Provider DragonGaming™ / Gaming software provider
NG-CONNECT DragonGaming™ API. RCS-API

Session ID/Token Session ID of the player

API Key Unigue key provided by DragonGaming to each operator.
Frontend / Site / White-label / Platform Operator's website in which games are displayed.

Game Lobby Area where games are shown on operator's website.

The following steps will aid in the integration between DragonGaming and new operators.

Authentication

- Each API user must obtain a unique API key

- Each request must contain the API key so each API request can be validatd.

API URLs + API Keys

- Any API URL points, and API Keys items will be shared separately with operators.

Request and Response

- HTTP Header “Content-Type": "application/json”
- Data sent in POST request should be in JISON format
- All the API responses are in JSON format

4 _ 5



Server to Server Communication

Server-level communications between provider and operator would be conducted in JISON format
and is transmitted over HTTP. The current default allows one request at any one time; however,
simultaneous requests are possible if required. By default, all currency values are provided in cents
with no decimal values. In exceptional cases, these can be provided in a base currency
(Pounds/Euros).

API Requests from operator to Provider

The following examples are some API requests that are currently provided to operators and third
parties. This non-exhaustive list is provided as a brief overview. The number and type of requests
can increase, as per an operator's requirements.

API Requests Flow

Following would be the typical flow of few of the API requests.

CasinoSite (front-end of the Operator) is the example website name.

Player A visits and logins into CasinoSite by providing Username and Password.

CasinosSite verifies Username and Password match and performs typical checks. If everything is
fine, a unique session ID (token) is created for the player in CasinoSite platform.

Player A visits the game lobby.

CasinoSite makes the API call GetGames() to Chronos to get the list of games enabled for the
CasinoSite. Chronos replies with the list of games enabled.

List of games are shown to the player in game lobby.

Player A clicks on any of DragonGaming™ games. CasinoSite needs to make Gamelaunch() API
call to Chronos API by providing the required details as part of API request.

Chronos registers the session ID and creates player details if not present and ignores if already
available in RGS platform and returns game launch URL to CasinoSite.

Game is launched (in a new window or redirected to the URL) in CasinoSite with the given
Gamelaunch URL sent by Chronos.

Player A plays the game which results in debits and credits. RGS game engine makes debit and

credit calls to Chronos accordingly.

2R 2R R AR K I R R AR

The API Chronos, realizing that the player's wallet is hosted in CasinoSite platform, redirects the calls
to the CasinoSite API platform. CasinoSites designs and implements this APl and performs the
operations on their account wallets. In return, CasionSite sends player’s balance details

post debit/credit.

¢

During every call, API_KEY is passed to Chronos by CasinoSite API.
— During all these calls, the session ID is passed to Chronos by CasinoSite and same session 1D will be
sent back to CasinoSite during player transactions API calls. CasinoSite recognizes the provided

session ID and performs the operations on their wallet.



GetGames() Flow

GetGames(API_KEY)
Operator API : Fetch RGS Database
Games List

GetLaunch() Flow

Player Select Game to Play Operator Front-end peluei RGS API
GameLaunch URL

Reditect to Game Ul
(Open New Window)

2 OpenGame

Wallet Typical Flow

Select Game to Play

= 1G: L. h
3 el Operator Front-end e RGS API
+ Open in New Window
Operator API
Debit() / Credit() RGS API Debit() / Credit() 5
- Wallet/Account Provider

Player

4 PlayGame()

Debit() & Credit() Flow
Debit() Debit() Operator 1
Credit() Credit() Wallet/Account Provider
Debit() Debit() Operator 2
Credit() Credit() Wallet/Account Provider




GetGames() API

This APl request allows the operator to receive a full list of our games which are enabled for their

particular front-end. If no games are enabled, the response would return as “empty”.

GetGames() Request
Type Input
HTTP Method POST
APl URL https:;/<API_BASE_URL>/games/get-games/
Headers “Content-Type""application/json”
POST Parameters json object e.g.:
{
"api_key": "lpghjl4v5apt2bks"
}
Parameters Type Description
api_key String API Ket allocation to each frontend
GetGames Request Sample

{
"api_key":"lpghjl4v5apt2bks"

}




Get Games Response Example

Response would be in JISON format. Type: dictionary. Dictionary contains a root level key result and
game details as value. Data in the response is self-explanatory.

"result": {
"games": {
"slots": [
{
"game-fruityfeast": {
"game_id": 4,
"game_name": "fruityfeast",
"game_title": "Fruity Feast",
"category": "slots",
"supplier": "test games",
"story": "Reap the Fruity Rewards",
"logos": [

{
"url": "https://test-gam-
ing.com/images/lobby/200x150/fruityfeast.png"”,
"width": "200",
"height": "150"
I

{

"url": "https://test-gam-
ing.com/images/lobby/400x300/fruityfeast.png",

"width": "400",

"height": "300"

}
1,
"launch_params": [
{

"width": 800,

"height": 600,

"resizable": true,

"scrollbars": false,

"type": "browser",

"launch_type": "new_window",

"window_title": "%full site_code%_%category%",

"channel": "desktop",

"launch_url": "https://test-
games.testsite.com/game_launcher.php?
session_id=%session_id%&channel=desktop&full_ site code=PFMNGOP&language=en&
game_name=%game_1i d%$&category=slots&amount
type=%amount_type%&reality check=%reality_check%"

o
{

"type": "browser",

"launch_type": "same window",

"channel": "mobile",

"launch url": "https://test-
games.testsite.com/game_launcher.php?
session_id=%session_id%&channel=mobile&
full site_ code=PFMNGOP&language=en&game name=%game_ id%&
category=slots&amount_type=%amount_ type%&reality check=%reality_check%"

1,
"amount_types": [
{
"id": "cash",
"value": 1,
"name": "Play"

"id": "bonus" ,
"value": nzu,
"name" : "Play"

i

"game2": "game_details"

}

14
"table games": [],
"scratch _cards": []




Parameters Type Description

result JSON Object Key values would be displayed as a dictionary.
games JSON Object Presented as a key inside the dictionary.
game_type JSON Object Inside each game is a list containing game

specific details in dictionary form.

GetGames() Error Response

Any response would be provided in JISON format. Display Type: dictionary. The dictionary contains two
keys names “error” and “error_details”. If an error occurs, the error key will contain the value 1and the er-
ror_details key would contain the information detailing that specific error. Any displayed messages
would be setup as appropriate to each error.

{
"api key":"1"
Yaeeer cliEanllg
"id":"1001",

"code":"INVALID API_KEY",
"message":"Invalid API key."

EnterGame() API

Operator needs to make EnterGame() API request to RGS API which allows the player to enter the
game. RGS API validates player's credentials, creates and registers session |ID (token)
at DG back-end, builds the launch URL and sends it back to the caller.

EnterGame() Request

Type Input

HTTP Method POST

APl URL https:;/<API_BASE_URL>/games/enter-game/

Headers "Content-Type'": "application/json"

POST json object e.g.: {

Parameters "api_key": "lpghjl4vb5apt2bks",
"provider": "dragongaming",
"game_type": "slots",

"game_id": 1032,
"platform": "desktop",

"language": "en",

"amount type": "real",
"username": "test username",
"password": "passt84fas28",



Parameters Type Description

api_key String API Key allocated to each front-end
provider String Game Provider. DragonGaming™ here.
game_type String Type of Game (eg: slots, table_games,

scratch_cards)

game_id Integer Game ID provided by the provider

platform String Channel in which player is playing the game.
Ex: desktop, mobile

language String Language the game will be played in.

amount_type String Mode of Play

For Example: ‘real’ — when playing with real
cash fun’—when playing fun mode
‘promo_freespin’—when playing with
promotions.

username String Player’s username.
Note: in fun’ mode arbitrary username
should be used, eg. “username”: “fun”

password String Player’s password.

Note: in ‘fun’ mode arbitrary password should
be used, e.g. “password”: “fun”

EnterGame() Response Example

Response would be in JISON format. Type: dictionary.

"result": {

"launch _url": "https://staging-games.dragongaming.com/game_launcher.php?

session_id=b6ef88a8054e328f4459b625baf38fae71981la34&

channel=desktop&full site code=PFMNGOP&

language=en&game name=kingofgods&category=slots&

amount_type=l&reality check=120"




Object / Key in Type Description
response object

launch_url JSON Object Key launch_url contains the
Game Launch URL as value that
is used to launch the game.

GameExit() API

Operator makes ExitGame() API request to RGS API to exit the player from the game. RGS API de-
letes the session ID of the player that was created earlier in DG back-end.

GameExit() Request
Type Input
HTTP Method POST
APl URL https:;/<API_BASE_URL>/games/game-exit/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4v5apt2bks",
. "username": "test username",
Parameters Type Description
api_key String APl allocated to each front-end
username String Player’s username

GameExit() Response Example

Response would be in JISON format. Type: dictionary.

"result": {

"status": "success"




Object / Key in Type Description
response object

result JSON Object Key result contains the JSON object as value.

status String Response status

CreatePlayer() API

This API request enables the operator to register a player in DG system. Password sent in POST pa-
rameters by the operator must be encrypted.

CreatePlayer() Request
Type SRR S o T e
HTTP Method POST
API URL https;/<API_BASE_URL>A/player/create-player/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4v5apt2bks",
"player id": "1025",
"username": "test_username",
"password": "passt84fas28",
"currency": "GBP",
"country": "HK",

api_key String API Key allocated to each front-end
player_id String Player ID of the player known to the operator
username String Username of the player

password String Player’s password

currency String 3 letter ISO currency symbol

country String 2 letter ISO country code



CreatePlayer() Response Example

Response would be in JISON format. Type: dictionary.

"result": {

"status": "success"

Object /Key in Type Description
response object

result JSON Object

status String

Key result contains the JSON object as value.

Resposnse status.



UpdatePassword() API

This API request enables the operator to update the password of the player in DG system.

UpdatePassword() Request
e Lt S e Sl ot S Sl
HTTP Method POST
API URL https:;//<API_BASE_URL>/player/update-password/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4v5apt2bks",
"username": "test username",
"password": "passt84fas28",
"new_password": "newPasswOrd",

api_key String API Key allocated to each front-end
username String Username of the player

password String Player’s current password
new_password String Player’s new password

UpdatePassword() Response Example

Response would be in JISON format. Type: dictionary.

"result": {
"status": "success"

Object /Key in Type Description
response object

result JSON Object Key result contains the JSON object as value.

status String Response status



WalletDeposit() API

This API request enables the operator to deposit funds from operator’s main wallet to provider’'s
game wallet.

WalletDeposit() Request
e e a SN
HTTP Method POST
API URL https:/<API_BASE_URL>/wvallet/wallet-deposit/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4vb5apt2bks",
"username": "test username",
"password": "passt84fas28",
"amount": 200,
"transaction_id": "10032"

api_key String API Key allocated to each front-end
username String Username of the player

password String Password of the player

amount Decimal Amount to be deposited into DG game wallet
transaction_id String Transaction ID

bonus_id String Provider will send the bonus / campaign 1D

which is related to the promotional freespins. It
will be null when it is in real mode.

WalletDeposit() Response Example

Response would be in JISON format. Type: dictionary.

"result": {

"status": "success",
"amount": 200.00,
"currency": "EUR"




Object /Key in Type Description
response object

result JSON Object Key result contains the JSON object as value.
status String Response status

amount Decimal Player’s balance after deposit

currency String Player's currency.

WalletWithdraw() API

This API request enables the operator to get the remaining funds from provider's game wallet to
operator’'s main wallet. It updates the game wallet by deducting the requested withdrawal
amount.

WalletWithdraw() request

ype RS 0 SNl o, R T e
HTTP Method POST
API URL https;//<API_BASE_URL>AwvalletAvallet-withdraw/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4vb5apt2bks",

"username": "test username",

"password": "passt84fas28",

"amount": 200,

"transaction_id": "10032"

}

api_key String API Key allocated to each front-end
username String Username of the player
password String Password of the player
amount Decimal Amount to be deposited into DG game wallet
transaction_id String Transaction ID

WalletWithdraw() Response Example
Response would be in JISON format. Type: dictionary.

"result": {
"status": "success",
"amount": 200,

"currency": "GBP"




Object /Key in Type Description
response object

result JSON Object Key result contains the JSON object as value.
status String Response status

amount decimal Player’s balance after withdraw

currency String 3 letter ISO currency code

WithdrawStatus() API

This API request enables the operator to grant bonus free spins (promotional free spins) to the player.

WithdrawStatus() Request

Type e SN
HTTP Method POST
APl URL https:;/<API_BASE_URL>Awallet/wallet-withdraw-status/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4vb5apt2bks",

"username": "test username",

"password": "passt84fas28",

"transaction_id": "10032"

}

api_key String API Key allocated to each front-end
username String Username of the player
password String Password of the player
transaction_id String Unique transaction ID

WithdrawStatus() Response Example
Response would be in JISON format. Type: dictionary.

"result": {

"status": "success",
"transaction_id": "10032",




Object /Key in Type Description
response object

result JSON Object Key result contains the JSON object as value.
status String Response status
transaction_id String Transaction ID

WalletTransactionStatus() API

This API request enables the operator to get the status of wallet transaction. Transaction can be
either deposit or withdraw by operator.

WalletTransactionStatus() Request

e T N,

HTTP Method POST
APl URL https:;//<API_BASE_URL>AwvalletAwvallet-transaction-status/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4v5apt2bks",

"username": "test username",

"password": "passt84fas28",

"transaction_type": "deposit",

"transaction_id": "10032"

}
api_key String API Key allocated to each front-end
username String Username of the player
password String Password of the player
transaction_type String Type of transaction. It can be either ‘deposit’ or
‘withdraw’

transaction_id String Unique transaction 1D

WalletTransactionStatus() response example

"result": {

"status": "success",
"transaction_id": "10032",




Object /Key in Type Description
response object

result JSON Object Key result contains the JSON object as value.
status String Response status
transaction_id String Transaction ID

WalletGetBalance() API

This API request enables the operator to get the available balance of a player.

WalletGetBalance() Request

e SRR N S e

HTTP Method POST
APl URL https;//<API_BASE_URL>Awallet/wallet-get-balance/
Headers "Content-Type'": "application/json"
POST json object e.g.:
Parameters { _

"api_key": "3c2ef39d0258le2db3ddf6c713e83e05",

"username": "123123",

"password": "1234yf"

}

api_key String API Key allocated to each frontend
username String Username of the player
password String

Player's password

WalletGetBalance() Response Example

"status": "success",
"amount": 12345,
"currency": "USD"
"account id": "123123"




Object /Key in Type Description
response object

Status
Amount
Currency

account_id

PlayerBets() API

Integer Response status

Decimal Latest balance of the player
String Currency of the player
String Player’s unique 1D

This API request enables the operator to get summarised betting activity for a playerin a

given period.

PlayerBets() Request

Type

HTTP Method

APl URL
Headers

POST
Parameters

Parameters
api_key
username
start_date
end_date

amount_type

POST
https;//<API_BASE_URL>/player/player-bets/
"Content-Type'": "application/json"

json object e.g.:

{

"api_key": "lpghjl4v5apt2bks",

"username": "test_username",

"start_date": "2020-02-20",

"end_date": "2020-02-21",

"amount_type": "real",
}
Type Description
String API Key allocated to each front-end
String Username of the player
String Start date for period of interest
String End datefor period of interest
String Type of play

4 _ )



PlayerBets() response example

"result": {
"status": "success",
"username": "test_username",
"account_id": "10032",
"num_bets": 50,
"total bet_amount": 1050,
"total win_amount": 920,
"currency": "GBP"

Object /Key in Type Description
response object

result JSON Object Key result contains the JSON object as value.
status String Response status

username String Username of the player

account_id String Account ID of the player

num_bets Integer Number of bets the player has placed during

the given period

total_bet_amount Integer Total amount of money the player has bet
during the given period

total_win_amount Integer Total amount of money the player has won
during the given period

currency String 3 letter ISO currency code




GameHistory() API

This API request enables the operator to get history of recent 100 game rounds played with real
cash mode by default.

GameHistory() Request
ype ST e S
HTTP Method POST
APl URL https:;/<API_BASE_URL>/games/game-history/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4vb5apt2bks",
"player id": "1002",
"amount type": "real",
"start_date": "2020-02-20 00:00:00",

"end date": "2020-02-21 00:00:00",
"page_num": 1,

api_key String API Key allocated to each front-end
player_id String ID of the player

amount_type String Mode using which game was played
start_date String End date time in the following format

“YYYY-MM-DD HH:MM:SS”

end_date String End date time in the following format
“YYYY-MM-DD HH:MM:SS”

page_num Integer Page number



GameHistory() Response Example

Response would be in JISON format. Type: dictionary.

"game_history": {
"headers": [
"Game Name",
"Round ID",
"Bet Amount", "Win
Amount"”, "Amount Type", "Date Time"],
"data": [
[
"Test Game Name-1",
1001,
100,
100,
"real",
"2019-07-23 17:20:57"

"Test Game Name-1",
1002,

100,
100,

"real",

"2019-07-23 17:20:57"

"Test Game Name-2",
1003,

100,

100,

"real",

"2019-07-23 17:20:57"

Object /Key in Type Description
response object

game_history JSON Object Response status

game_history[‘headers’] JSON List Table headers

game_history[‘data’] JSON List of Lists List of Lists of game rounds data




GameHistoryAllPlayers() API

This API request enables the operator to get the game history of all the players for a given time
period. For now, RGS API sends up to 30 minutes of data per request.

GameHistoryAllPlayers() Request

e ST eSSy

HTTP Method POST
APl URL https;/<API_BASE_URL>/games/games-history-all-players/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4v5apt2bks",
"amount_type": "real",
"start_date": "2020-05-26 13:30:00",
"end date": "2020-05-26 14:00:35",

api_key String API Key allocated to each front-end
amount_type String Mode using which game was played
start_date String Start date time in the following format

“YYYY-MM-DD HH:MM:SS”

end_date String End date time in the following format
“YYYY-MM-DD HH:MM:SS”




GameHistoryAllPlayers() Response Example

Response would be in JISON format. Type: dictionary.

"game_history": {
"headers": [
"Player ID",
"Game ID",
"Game Name",
"Game Category",
"Platform",
"Round ID",
"Bet Amount",
"Win Amount",
"Amount Type",
"Play Type",
"Date Time",
"Bet Status"
1,
"data": [
[
"1001",
"1001",
"Game-1 Title",
"slots",
"desktop",
1234,
100,
0,
"real",
"normal",
"2020-05-05 10:20:57",
"lose"

"1001",

TIEOIL™,

"Game-2 Title",
"slots",
"desktop",
1234,

100,

10,

"real",
"freespin",
"2020-05-05 10:20:57"

YA ,

"1001",

"Game-3 Title",
"slots",
"desktop",
1234,

100,

20,

"real",
"normal",
"2020-05-05 10:20:57",
"lose"

"1001",

"1001",

"Game-4 Title",
"slots",
"desktop",
1234,

100,

0,

"real",
"respin",
"2020-05-05 10:20:57",

win




Object /Key in Type Description
response object

game_history JSON Object Response status
game_history[‘headers’] JSON List Table headers
game_history[‘data’] JSON List of Lists List of Lists of game rounds data

GrantBonus() API

This API request enables the operator to grant bonus free spins (promotional free spins) to the
player.

GrantBonus() Request
e R S R T s
HTTP Method POST
APl URL https:/<API_BASE_URL>/wallet/grant-bonus/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "150YORx1BCOhYbCm",
"amount_type": "promo_freespin",
"campaign_id": "BOn-3",
"game_ids": [
1032,
1041
] 14
"coin_value_ level": 1,
"num_rounds": 10,
"player ids": [
"267"
1/
"currencies": [
"usD"
] 14
"start_date": "2021-01-19 14:00:00",

"end_date": "2021-01-30 15:00:00",




api_key

amount_type

campaign_id

game_ids

coin_value_level

numM_rounds

player_ids

currencies

start_date

end_date

mMax_win_limit
(optional)

String API Key allocated to each front-end

String Mode of the play. Ex:
‘promo_freespin’—Itis when the player is play-
ing with promo freespins

String It should be unique campaign id
List List of game_id for which promo free spins are
granted.

Ex: game_ids: [1]10,6,3]

Integer The value must be an integer and must be
from allowed list of coin values levels.
Before you start with promo freespins, we will
provide the list of allowed coin value levels.
Ex: coin_values:[10, 10, 20, 30]

Integer It indicates the number of free spin rounds that
is granted to the player.

List Player ID of the player known to the operator.
Free spins are granted to all these player IDs
mentioned in this list and for all the games
mentioned in the game_ids list.

List Currency of the player and it should match
with the player currency which is already regis-
tered with us. Currencies count should match
with the players count.

Ex- ["EUR", “USD’]

String(Optional) Date time from which this bonus can be used.
It should not be less than are equal to current
time
format = “YYYY-MM-DD HH:MM:SS"

String Expire date time of the promotion. It cannot be
less than the start_date
format = “YYYY-MM-DD HH:MM:SS”

Integer This parameter is used to cap the winnings
from promo free spins. We need to provide this
value while granting free spins. It's value is in
cents. It should be O when there is no cap on
the winnings.

For example, Player with USD currency is
awarded with 10 free spins with 100 cents as
cap amount. If the winnings are USD 20 from
these 10 rounds, as per the cap amount, only 1
USD is credited to the player wallet. If the cap
value is set a O, entire win amount of USD 20 is
credited to player wallet.



GrantBonus() APl Additional Notes

Combination of campaign_id, player_id and game_id is always unique per operator/aggregator.
Coin value levels are explained below. Below are the coin values per game and per currency for ref-
erence. Actual coin values will be provided during the integration.

European Union EUR 1 2 3 4 5
Argentina ARS 30 60 90 120 150
Australia AU 1 2 3 4 5
Brazil BRL 5 10 15 20 25
Bulgaria BGN 1 2 3 4 5
Canada CAD 1 2 3 4 5
China CNY 10 20 30 40 50

—$ Example: For Game-1if the coin value level 3 is chosen, coin value for EUR player would be 3, coin
value for ARS player would be 90, coin value for BRL would be 15. These are the coin values that will
be used during the promo free spins play.

GrantBonus() Response & Example

"result": {

"status": "success",

"promo_freespin id": 131

Object /Key in Type Description
response object

result JSON Object Key result contains the JSON object as value.
status String Response status

promo_freespins_id Integer This is providers ID.




	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29



