DRAGONCAMING

CONNECT APl DOCUMENTATION
—aw BRe ML ESS WA BINETE ——

Contents

Introduction

Glossary

Authentication

API URLs + API Keys

Request and Response

Server to Server Communication

API Requests Flow

API Requests from Operator to Provider

GetGames() API

- GetGames() Request

- GetGames() Request Sample

© hesl @ |‘9° Ii# II‘!" II‘!" II‘!‘" i |‘,!‘" l o Iﬂ"

- GetGames() Response Example

- GetGames Error Response 10

GameLaunch() API ’]Q'
- GamelLaunch() Request 10
- GamelLaunch() Response Example M

GameHistory() API 12

4

- GameHistory() Request 12

- GameHistory() Response Example

unfinishedgames() API

4

- unfinishedgames() Request 14

- unfinishedgames() Response Example 15

b—z

GrantBonus() API

d

- GrantBonus() Request

N

- GrantBonus() Additional Notes

- GrantBonus() Response Example

v /Nv (O | S |
Jo l (e} [00]

BonusList() API
- BonusList() Request 20
- BonusList() Response Example 21

pfscoinvalues() API

y }Nl l
—d

- pfscoinvalues() Request 21
- pfscoinvalues() Response Example 22
cancelpromotion() API ’;2“2-
- cancelpromotion() Request 22
- cancelpromotion() Response Example 22

API Requests from Provider to Operator

d

GetSession() API ”\2;5
- GetSession() Request 23
- GetSession() Response Example 25
Get Balance() API ”\2“4
- GetSession() Request 24
- GetSession() Response Example 25
Debit() API "\2“6
- GetSession() Request 26
- GetSession() Response Example 27

d

Credit() API
- GetSession() Request 28
- GetSession() Response Example 29

Refund() API i-:;’»p
- Refund() Request 30
- Refund() Response Example 31

Error Handling and Error Codes

3

A

- Error response example

3]

List of Common Error Codes and Messages for all POST Parameters

32

List of Error Codes and Messages

33

dd

Introduction

As a game provider, our objective is to deliver exceptional games and experiences to our customers
and their players. We would like to see this translate into you integrating our games onto your
casino lobby.

This document provides an insight into our API, known as “Chronos”. It addresses the key interac-
tions and requirements from both DragonGaming™ and your perspective. It provides coverage
over a wide range of services which can be used by you on your welbsites, game-servers, and any
other API services.

You are required to follow a standard integration process; however, this document will provide a
brief overview on several key functions required of our API. This includes integration to Chronos
API, API request details, server-to-server integration, game integration and wallet transactions.

We have a separate integration guide that explains the overall integration spec and also includes
all the various tools, currencies and languages that we support.

Glossary

Operator Anyone that owns / operates a website / frontend.

RGS Remote Game Server (by provider)

Provider DragonGaming™ / Gaming software provider
NG-CONNECT DragonGaming™ API. RCS-API

Session ID/Token Session ID of the player

API Key Unigue key provided by DragonGaming to each operator.
Frontend / Site / White-label / Platform Operator's website in which games are displayed.

Game Lobby Area where games are shown on operator's website.

The following steps will aid in the integration between DragonGaming and new operators.

Authentication

- Each API user must obtain a unique API key

- Each request must contain the API key so each API request can be validated.

API URLs + API Keys

- Any API URL points, and API Keys items will be shared separately with operators.

Request and Response

- HTTP Header “Content-Type": "application/json”
- Data sent in POST request should be in JISON format
- All the API responses are in JSON format

4 _ 5

Server to Server Communication

Server-level communications between provider and operator would be conducted in JISON format
and is transmitted over HTTP. The current default allows one request at any one time; however,
simultaneous requests are possible if required. By default, all currency values are provided in cents
with no decimal values. In exceptional cases, these can be provided in a base currency
(Pounds/Euros).

API Requests Flow

Following would be the typical flow of few of the API requests.

R 2R S A A R 22,

¢4

CasinosSite (front-end of the Operator) is the example website name.

Player A visits and logins into CasinoSite by providing Username and Password.

CasinosSite verifies Username and Password match and performs typical checks. If everything is
fine, a unique session ID (token) is created for the player in CasinoSite platform.

Player A visits the game lobby.

CasinoSite makes the API call GetGames() to Chronos to get the list of games enabled for the
CasinoSite. Chronos replies with the list of games enabled.

List of games are shown to the player in game lobby.

Player A clicks on any of DragonGaming™ games. CasinoSite needs to make Gamelaunch() API
call to Chronos API by providing the required details as part of API request.

Chronos registers the session ID and creates player details if not present and ignores if already
available in RGS platform and returns game launch URL to CasinoSite.

Game is launched (in a new window or redirected to the URL) in CasinoSite with the given
Gamelaunch URL sent by Chronos.

Player A plays the game which results in debits and credits. RGS game engine makes debit and
credit calls to Chronos accordingly.

The API Chronos, realizing that the player's wallet is hosted in CasinoSite platform, redirects the calls
to the CasinoSite API platform. CasinoSites designs and implements this API and performs the
operations on their account wallets. In return, CasionSite sends player's balance details

post debit/credit.

During every call, API_KEY is passed to Chronos by CasinoSite API.

During all these calls, the session ID is passed to Chronos by CasinoSite and same session 1D will be
sent back to CasinoSite during player transactions API calls. CasinoSite recognizes the provided

session ID and performs the operations on their wallet.

GetGames() Flow

GetGames(API_KEY)

Fetch RGS Database

Operator API k
Games List
GetLaunch() Flow
Select Game to Play Operator Front-end et auncall RGS API
GamelLaunch URL

Reditect to Game Ul
(Open New Window)

2 OpenGame

Wallet Typical Flow

Select Game to Play

- 1GamelLaunch
3 Rediroer T — Operator Front-end GameLaun': 4 gL RGS API
+ Open in New Window

Operator API

Player

4 PlayGame()

it() / Credi bit() / Credi)
e R T e Wallet/Account Provider
Debit() & Credit() Flow
Debit() Debit() Operator 1
Credit() Credit() Wallet/Account Provider
Debit() Debit() Operator 2
Credit() Credit() Wallet/Account Provider

API Requests from Operator to Provider

The following examples are some API requests that are currently provided to operators and third
parties. This non-exhaustive list is provided as a brief overview. The number and type of requests
can increase, as per an operator's requirements.

GetGames() API

This API request allows the operator to receive a full list of our games which are enabled for their

particular front-end. If no games are enabled, the response would return as “empty”.

GetGames() Request
Type Input
HTTP Method POST
APl URL https:/<API_BASE_URL>/games/get-games/
Headers “Content-Type""application/json”
POST Parameters json object e.g.:
{
"api_key": "lpghjl4v5apt2bks"
}
Parameters Type Description
api_key String API Key allocation to each frontend
GetGames Request Sample

{
"api_key":"lpghjl4v5apt2bks"

}

Get Games Response Example

Response would be in JISON format. Type: dictionary. Dictionary contains a root level key result and
game details as value. Data in the response is self-explanatory.

"result": {
"games": {
"slots": [
{
"game-fruityfeast": {
"game_id": 4,
"game_name": "fruityfeast",
"game_title": "Fruity Feast",
"category": "slots",
"supplier": "test games",
"story": "Reap the Fruity Rewards",
"logos": [

{
"url": "https://test-gam-
ing.com/images/lobby/200x150/fruityfeast.png"”,
"width": "200",
"height": "150"
I

{

"url": "https://test-gam-
ing.com/images/lobby/400x300/fruityfeast.png",

"width": "400",

"height": "300"

}
1,
"launch_params": [
{

"width": 800,

"height": 600,

"resizable": true,

"scrollbars": false,

"type": "browser",

"launch_type": "new_window",

"window_title": "%full site_code%_%category%",

"channel": "desktop",

"launch_url": "https://test-
games.testsite.com/game_launcher.php?
session_id=%session_id%&channel=desktop&full_ site code=PFMNGOP&language=en&
game_name=%game_1i d%$&category=slots&amount
type=%amount_type%&reality check=%reality_check%"

o
{

"type": "browser",

"launch_type": "same window",

"channel": "mobile",

"launch url": "https://test-
games.testsite.com/game_launcher.php?
session_id=%session_id%&channel=mobile&
full site_ code=PFMNGOP&language=en&game name=%game_ id%&
category=slots&amount_type=%amount_ type%&reality check=%reality_check%"

1,
"amount_types": [
{
"id": "cash",
"value": 1,
"name": "Play"

"id": "bonus" ,
"value": nzu,
"name" : "Play"

i

"game2": "game_details"

}

14
"table games": [],
"scratch _cards": []

Parameters Type Description

result JSON Object Key values would be displayed as a dictionary.
games JSON Object Presented as a key inside the dictionary.
game_type JSON Object Inside each game is a list containing game

specific details in dictionary form.

GetGames() Error Response

Any response would be provided in JISON format. Display Type: dictionary. The dictionary contains two
keys names “error” and “error_details”. If an error occurs, the error key will contain the value 1and the er-
ror_details key would contain the information detailing that specific error. Any displayed messages
would be setup as appropriate to each error.

{
"api key":"1"
Yaieeene clzigaullg {
"id":"1001",

"code":"INVALID API_KEY",
"message":"Invalid API key."

GameLaunch() API

Operator needs to make Gamelaunch() API request to RGS API to get game launch URL. Though
game launch URL would have been sent already in GetGames() API call response, it allows RGS AP
to register the session, builds the launch URL and sends it back to the caller.

GamelLaunch() Request
Type Input
HTTP Method POST
APl URL https;/<API_BASE_URL>/games/game-launch/
Headers "Content-Type'": "application/json"
POST json object e.g.:
Parameters {
"api_key": "lpghjl4v5apt2bks",
"session_id": "b6ef88a8054e328f4459b625baf38fae71981a34",
"provider": "dragongaming",
"game_type": "slots",
"game id": "5",
"platform": "desktop",
"language": "en",
"amount type": "real",
"lobby url": "",
"deposit_url": "",

"context": {
"id": "1232",

"username": "username",
"country": "GB",
"currency": "GBP"

Parameters Type Description

api_key String API Key allocation to each frontend
session_id String Session ID created for the player during login
provider String Game Provider. DragonGaming™ here.
game_type String Type of Game (eg: slots, table_games,

scratch_cards)

game_id String Game ID provided by the provider

platform String Channel in which player is playing the
game. Ex: desktop, mobile

language String Language the game wiill be played in

amount_type String Mode of Play

For Example:
‘real’—when playing with
real cash

fun’—when playing fun
mode
‘promo_freespin'—when
playing promotions

lobby_url String Home or Lobby URL of the operator
deposit_url String Deposit URL of the operator
context JSON Object JSON object containing player details such

as first name, last name, username,
country, gender, agent_id** etc.

Note:
*When amount type is fun, please send random session_id, O as player_id, ‘fun_player’ as username in
context as we have uniform API for game launch.

** Agent_id parameter is optional. However, once the agent_id is given for a particular player for the first
time it will be recorded in our database along side with player id and it will remain the same even ifa
different ID is being sent by operator.

GamelLaunch() Response Example

Response would be in JISON format. Type: dictionary.

"launch url": "https://staging-games.dragongaming.com/game_launcher.php?
session_id=b6ef88a8054e328f4459b625baf38fae71981la34&channel=desktop&full site code=PF
MNGOP&language=en&game name=twindragons&category=slots&amount_ type=l&reality check=12

0&lobby url=<lobby url>&deposit url=<deposit_ url>"
}

Object / Key in Type Description
response object

launch_url JSON Object Key launch_url contains the
Game Launch URL as value that
is used to
launch the game.

GameHistory() API

This API request enables the operator to get history of recent 100 game rounds played with real
cash mode by default.

GameHistory() Request
Type S e SN e ——
HTTP Method POST
APl URL https:;/<API_BASE_URL>/games/game-history/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4vb5apt2bks",
"player id": 1002,
"amount type": "real",
"start date": "2020-02-20 00:00:00",
"end date": "2020-02-21 00:00:00",
"page_num": 1,
}
Parameters Type Description
api_key String API Key allocated to each frontend
player_id String ID of the player
amount_type String Mode using which game was played
start_date String End date time in the following format “YYYY-
MM-DD HH:MM:SS”
end_date String End date time in the following format
player_id (optional) String Unique ID of player. If this paramtere sent in
request, then response will be return in player
specific.

GameHistory() Response Example

Response would be in JISON format. Type: dictionary.

"game_ history": {
"headers": [
"Game Name",
"Round ID",
"Bet Amount", "Win
Amount", "Amount Type", "Date Time"],
"data": [
[
"Test Game Name-1",
1001,
100,

"real",
"2019-07-23 17:20:57"

"Test Game Name-1",
1002,

100,

100,

"real",

"2019-07-23 17:20:57"

"Test Game Name-2",
1003,

100,

100,

"real",

"2019-07-23 17:20:57"

Object /Key in Type Description
response object

game_history JSON Object Response status
game_history[‘headers’] JSON List Table headers
game_history[‘data’] JSON List of Lists List of Lists of game rounds data

UnfinishedGames() API

This API request enables the operator to get unfinished games list of last 30 days.

UnfinishedGames() request

e BRSNS R

HTTP Method POST
APl URL https:/<API_BASE_URL>/games/unfinished-games/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "lpghjl4vb5apt2bks",
"player id": "1",
"game_type": "slots",
"amount_type": "real"

api_key String API Key allocated to each frontend

player_id String Player ID of the player known to the Operator

game_type String Type of Game (eg: slots, table_games, scratch_-
cards)

amount_type String Mode of Play For Example: ‘real’ —when playing

with real cash ‘freespins’ —when playing with
promo_freespin

UnfinishedGames() Response Example

Response would be in JISON format. Type: dictionary.

"game_history": {
"freespins": {
"headers": [
"Game Name",
"Round ID",
"Amount Type",
"Num Spins",
"Spins left",
"Date Time"
1/
"data": [
[
"Test Game Name-1",
1001,
"real",
10,
10,
"2019-07-23 17:20:57"

"Test Game Name-1",
1002,

"real",

"2019-07-23 17:20:57"

"bonus_games": {
"headers": [

"Game Name",
"Round ID",
"Amount type",
"Num Picks",
"Num of User Picks",
"Date Time"

1,
Hda oIl
[
"Test Game Name-1",
1201,
"real",
5,
0,
"2019-07-23 17:20:57"

"Test Game Name-1",
1202,

"real",

1,

0!
"2019-07-23 17:20:57"

"Test Game Name-2",
1303,

"real",

4!

3,
"2019-07-23 17:20

Object /Key in Type Description
response object

game_history JSON Object Key game_history contains the JSON object as
value. Conta)ins 2 keys ‘freespins’ and ‘bo-
nus_games

game_history JSON Object JSON Object with 2 keys freespins and data.

[freespins’]

headers JSON List List of table headers

Game Name String Name of the game

Round ID Integer Round ID which triggered free-spins

Amount Type String Mode using which game was played

Num Spins Integer Number of spins initially awarded

Spins Left Integer Number of remaining spins

Date Time String Server UTC time game played at

data JSON List of Lists List of Lists of freespins.

game_history JSON Object JSON Object with 2 keys

[‘bonus_games'] bonus_games and data.

headers JSON List List of table headers

Game Name String Name of the game

Round ID Integer Round ID which triggered free-spins

Amount Type String Mode using which game was played

Num Picks Integer Number of picks initially awarded

Num of User Picks Integer Number of remaining picks

Date Time String Server UTC time game played at

data JSON List of Lists List of Lists of bonus games

GrantBonus()API

This API request enables the operator to grant bonus free spins (promotional free spins) to
the player

GrantBonus() Request
Type RS 0 SNl o, R T e
HTTP Method POST
APl URL https://<API_BASE_URL>/wallet/grant-bonus/
Headers "Content-Type'": "application/json"
POST json object e.g.: {
Parameters "api_key": "150YORx1BCOhYbCm",
"amount_type": "promo_ freespin",
"campaign_ id": "BOn-3",
"game_ids": [
1032,
1041
1,
"coin_value level": 1,
"num rounds": 10,
"player ids": [
"267"
1,
"currencies": [
"usD"
1,
"start_date": "2021-01-19 14:00:00",
"end date": "2021-01-30 15:00:00",
"max win_ limit":0,
}

api_key String API Key allocated to each front-end

amount_type String Mode of the play. Ex:
‘promo_freespin’ - It is when the player is
playing with promo freespins

campaign_id String It should be unique campaign id

game_idstransaction_id List List of game_id for which promo free spins are-
granted. Ex: game_ids: [1,10,6,3]

coin_value_level Integer The value must be an integer and must be
from allowed list of coin values levels.
Before you start with promo freespins, we will
provide the list of allowed coin value levels.
Ex: coin_values:[10, 10, 20, 30]

nuMmM_rounds INnteger It indicates the number of free spin rounds
that is granted to the player.

player_ids List Player ID of the player known to the operator.
Free spins are granted to all these player IDs
mentioned in this list and for all the
games mentioned in the game_ids list.

currencies List Currency of the player and it should match
with the player currency which is already
registered with us. Currencies count should
match with the players count.
Ex- [‘EUR", “USD"]

start_date String (Optional) Date time from which this bonus can be used.
It should not be less than are equal to current
time format = “YYYY-MM-DD HH:MM:SS”

end_date String Expire date time of the promotion. It cannot be
less than the start_date format = “YYYY-MM-DD
HH:MM:SS”

max_win_limit (optional) Integer This parameter is used to cap the winnings

from promo free spins. We need to provide this
value while granting free spins. It's value is in
cents. It should be O when there is no cap on
the winnings.

For example, Player with USD currency is
awarded with 10 free spins with 100 cents as
cap amount. If the winnings are USD 20 from
these 10 rounds, as per the cap amount, only 1
USD is credited to the player wallet. If the cap
value is set a O, entire win amount of USD 20 is
credited to player wallet.

GrantBonus() APl Additional Notes

—$ Combination of bonus_id, player_id and game_id is always unique per operator/aggregator.

— Coin value levels are explained below. Below are the coin values per game and per currency for ref-
erence. Actual coin values will be provided during the integration.

Game Name —= Game Namel

Coin Levels —— 1 2 3 4 5
European Union EUR 1 2 3 4 6
Argentina ARS 30 60 90 120 180
Australia AU 1 2 g 4 6
Brazil BRL 5 10 15 20 25
Bulgaria BGN 1 2 3 4 5
Canada CAD 1 2 3 4 5
China CNY 10 20 30 40 50

— Example: For Game-1 if the coin value level 3 is chosen, coin value for EUR player would be 3, coin
value for ARS player would be 90, coin value for BRL would be 15. These are the coin values that will
be used during the promo free spins play.

GrantBonus() Response Example

Response would be in JISON format. Type: dictionary.

"result": {

"status": "success",

"promo_ freespin id": 131

Object /Key in Type Description
response object

result JSON Object Key result contains the JSON object as value.
status String Response status

promo_freespins_id Integer This is providers ID.

BonuslList() API

This API request enables the operator to get the list already awarded bonuses.

BonusList() Request
Type e SN e ——
HTTP Method POST
APl URL https:;/<API_BASE_URL>Awallet/bonus-list/
Headers "Content-Type'": "application/json"
POST json object e.g.:
Parameters .
"api_key": "150YORx1BCOhYbCm",
"start date":"2021-01-19 14:00:00",
"end date":"2021-01-30 15:00:00",
"limit_level":1
}
Parameters Type Description
api_key String API Key allocated to each frontend
start_date String Date time from which this bonus can be used.
format = “YYYY-MM-DD HH:MM:SS”
end_date String Expire date time of the promotion.
format = “YYYY-MM-DD HH:MM:SS”
limit_level Integer It should be from 1to n. Per request, API sends
only recent 400 records in the response. To get
2nd recent 400 records, it value should be 2. This
is similar to pagination.
player_id (optional) String Unique ID of player. If this paramtere sent in
request, then response will be return in player
specific.

BonusList() Response Example

"result": {

"status": "success",

"headers": '[campaign_id, player id, currency, game_ ids, coin value level,

num_rounds, state, max win limit, promo start date, promo end date]',
"bonus_list": [['NewYear-1', 'userl23', 'UsSD', '[1032, 1041]', 1, 10, 'completed',
100, '2021-03-08 09:37:20', 2021-03-09 09:37:20'],
['NewYear-2', 'userl23', 'Usp', '[1032, 1041]', 1, 10, 'completed', 100, '2021-03-08
09:37:20"', 2021-03-09 09:37:20']]
}

pfscoinvalues() API

This API request enables the operator to fetch the coin values of all supported currencies for promo
free spins. Values present in bet_values object are the ones that are used for wagering and same
values are shown in the game Ul. These coin values are in cents.

pfscoinvalues() Request
Type R S R T s
HTTP Method POST
API URL https:;//<API_BASE_URL>/more/pfs-coin-values /
Headers "Content-Type'": "application/json"
POST json object
Parameters

Ex: {"api_key":"6pjut¥Yd23hL6vdGt", "game_ id":6}

Parameters Type Description
api_key String API Key allocated to each frontend
game_id Integer Please send the game ID, Operator can also find

the game ID in get_games() API response.

pfscoinvalues () response example

"result": {
"leprechaunsloot”,

"game_ name":

"game_id": 6,

"title":

"bet values": [{
"AMD": [15000, 30000, 45000,
"ARS": [900, 1800, 2700, 3600,
"AuD": [30, 60, 90, 120, 150],
"BGN": [30, 60, 90, 120, 150],
"BRL": [150, 300, 450, 600, 7501,
“CAD": [30, 60, 90, 120, 150]

"Leprechaun's Loot",

60000, 750007,
45007,

cancelpromotion() API

This API request enables the operator to cancel the awarded bonus free spins (promotional free
spins).

cancelpromotion() Request

POST

Type

HTTP Method

APl URL https:/<API_BASE_URL>/more/cancel-promotion/

Headers "Content-Type'": "application/json"

POST json object

Parameters)) o
Ex: {"api_key":"6pjut¥d23hL6vdGt", "promo freespin_ id":"qw-
ertyuiopasdfghijk”}

Parameters Type Description

api_key String API Key allocated to each frontend

promo_freespin_id String This ID will be sent in grantbonus() API response,

same promo_freespin_id should be sent here.

cancelpromotion() response example

"result": {

"status":

"campaign_id":

"success",

"promo freespin id":

"test_ofl",

"iuytrewqgasdfghjk"

API Requests from Provider to Operator

The following examples are some API requests that are currently provided to operators and third
parties. This non-exhaustive list is provided as a brief overview. The number and type of requests
can increase, as per an operator's requirements.

GetSession() API

Any Request parameters that are part of this API request would be provided with a token /
session_id, typically a unique string assigned to each player. This response would contain
information from the given session_id, such as player’'s account ID, username / alias, first name
last name etc.

GetSession() Request
Type Input
HTTP Method POST
APl URL https:;/<API_BASE_URL>/get_session
Headers "Content-Type'": "application/json"
POST json object e.g.:
Parameters i "token": "3c2ef39d02581le2db3ddf6c713e83€05"
Parameters Type Description
token String Unique string assigned to each player

GetSession() Response Example

Response would be in JISON format. Type: dictionary.

"status":"0",
HaccoUnEREc R RS2 S
"username":"test username",

"country":"US",
"token":"3c2ef39d-2581e2db3ddf6c713e83e05",
"balance":"12345",

"currency":"USD",

Object / Key in Type Description
response object

status Integer Response status
account_id String Account ID of the player
username String Username of the player or

alternatively it can be the value of
account_id when the actual username
can't be shared

country String Country of the player

token String Unique string assigned to each player
(session ID).

balance Integer Balance of the player

currency String Currency of the player

GetBalance() API

This APl request enables the operator to get the available balance of a player.

GetBalance() Request
Type Input
HTTP Method POST
APl URL https:;//<API_BASE_URL>/get_balance
Headers "Content-Type'": "application/json"
POST json object e.g.:
Parameters {

"token": "3c2ef39d02581le2db3ddf6c713e83e05"
"account_id": "123123"

token String Unique string assigned to each player

account_id String Account ID of the player

GetBalance() Response Example

Response would be in JISON format. Type: dictionary.

"status":"0",

gD RTIADT
“country " “uUsH,
"token":"3c2ef39d-2581e2db3ddf6c713e83e05",
"balance":"12345",

"currency":"USD",

Object /Key in Type Description
response object

status Integer
account_id String
country String
token String
balance Integer
currency String

Response status
Unique ID of the plaver
Country of the player in ISO format

Unique string assigned to each player
(session ID).

Available balance of the player

Currency of the player

DebitAPI

This API request debits a currency amount from a player’s balance. This triggered every time a
player plays a game. The response would contain information and details of any debited amounts.

Debit() Request

Type Input

HTTP Method

POST

APl URL https:;//<API_BASE_URL>/debit
Headers "Content-Type'": "application/json"
POST json object e.g.:

Parameters {

"token": "cc918a3eddead5ef5c31d6e3b9dcedafed3c02eb”,
"account_id": "259823",
"amount": 100,
"amount_type": "real",
"currency": "GBP",
"game_id": 1,
"transaction_id": "123456",
"round_id": 198909,
"game_type": "slots",
"game_name": "testgamename",
"note": "debit"

"bonus_id": "test2147hff"

token String Unique string assigned to each player

account_id String Account ID of the player

amount Integer Amount to be debited from player's wallet.

amount_type String Indicate type of amount type. It can be real /
promo_freespin.

currency String Currency of the player

game_id Integer Unique ID of the game

transaction_id String Unique id of the transaction

round_id Integer Round ID of each play/spin

game_type String Type of the game. slots / table_games /
scratch_cards/ bingo

game_name String Name of the game

note String Extra information about the debit request

bonus_id String Provider will send the bonus / campaign 1D

which is related to the promotional freespinsKXit
will be null when it is in real mode.

Debit() Response Example

Response would be in JISON format. Type: dictionary.

g O
g "il2gad"

: "us",
¢ "3c2ef39d02581e2db3ddf6c713e83e05",

: 12345,
'I

: "205354854449856",

response object

status Integer Response status

account_id String Account ID of the player

country String Country of the player

token String Unique string assigned to each player
(session ID).

balance Integer Balance of the player

currency String Currency of the player

transaction_id String Debit transaction ID

bonus_amount INnteger Bonus amount available in plaver's

wallet. If thisamount is not available
please send O value

Credit()API

This would be similar to the Debit API Request. This API request is made to credit currency amount
to a player's account balance. This is made every time a player wins a monetary value from the
games. Its response would contain the information of all credited amounts

Credit() Request

e ST s ey

HTTP Method POST
API URL https:/<API_BASE_URL>/credit
Headers "Content-Type'": "application/json"

POST json object e.g.:
Parameters {

"token": "cc918a3ed4dead5ef5c31d6e3b9dcedafed3c02eb”,
"account_id": "259823",
"amount": 100,
"amount_type": "real",
"currency": "GBP",
"game_id": 1,
"transaction_id": "123456",
"round_id": 198909,

"game_ type": "slots",
"game_name": "testgamename",
"note": "credit"

"bonus_id": "test2147hff"

"isfreespin":"true"

token String
account_id String
amount Integer
amount_type String
currency String
game_id Integer
transaction_id String
round_id Integer
game_type String
game_name String
note String
round_end_state Boolean
bonus_id String
Isfreespin Boolean
Credit() Response Example

Response would be in JISON format. Type: dictionary.

g g
g TZglagd"
g Mg,
"3c2e£39d02581e2db3ddf6c713e83e05",
: 12345,
“USDE,

: "205354854449856",
. "10"

Unique string assigned to each player
Account ID of the player
Amount to be credited to player’s wallet.

Indicate type of amount type. It can be real /
promo_freespin.

Currency of the player
Unique ID of the game
Unique id of the transaction
Round ID of each play/spin

Type of the game. slots / table_games /
scratch_cards/ bingo

Name of the game
Extra information about the credit request

true indicates round is closed
false indicates round is open

Provider will send the bonus / campaign 1D
which is related to the promotional freespinsKit
will be null when itis in real mode.

true indicates it is a freespin
false indicates it is not a freespin

Object /Key in Type Description
response object

status Integer Response status

account_id String Account ID of the player

country String Country of the player

token String Unique string assigned to each player
(session ID).

balance Integer Balance of the player

currency String Currency of the player

transaction_id String Credit transaction 1D

bonus_amount Integer Bonus amount available in player’s

wallet. If thisamount is not available
please send O value.

Refund()API

This API request allows the credit of an amount to a player’s balance. This request is made when
something goes wrong at the server / game-engine side and a previous debit request needs to be
refunded. Its response would contain the information of any credited amount.

Refund() Request
e R TR SNl Pt |
HTTP Method POST
APl URL https://<API_BASE_URL>/refund
Headers "Content-Type'": "application/json"
POST json object e.g.:
Parameters {

"token": "cc918a3ed4dead5ef5c31d6e3b9dcedafed3c02eb”,
"account_id": "259823",
"amount": 100,

"original_ transaction_id": 1655,
"transaction_id": 2322
"amount_type": "real",
"currency": "GBP",

"game_id": 1,

"round_id": 198909,

"game_type": "slots",
"game_name": "testgamename",
"note": "refund",

token String Unique string assigned to each player
account_id String Account ID of the player

amount Integer Amount to be credited from player’s wallet.
original_transaction_id String Atransaction ID which is related to

respective debit transaction.

transaction_id String New refund transaction ID, should not be
the same as the failed transaction.

amount_type String Indicate type of amount type. It can be
real only.

currency String Currency of the player.

game_id Integer Unique ID of the game.

round_id Integer Round ID related to the Debit request in
guestion.

game_type String Type of the game. slots / table_games /
scratch_cards/ bing.

game_name String Name of the game

note String Extra information about the cancel debit
request

Refund() Response Example

Response would be in JISON format. Type: dictionary.

e
g Vilagilagy
g TeY,
: "3c2ef39d02581e2db3ddf6c713e83e05",

: 12345,
"uSD",
"10"

Error Handling and Error Codes

An error response has the following format and data.

UnfinishedGames() Response Example

"error": 1,

"error_details": {
Yy ML,
"code": "INVALID API KEY",
"message": "Invalid API key."

Object /Key in Type Description
response object

Error Integer Its value would be 1incase error
occurs.

error_details JSON Object It has 3 keys id, code and message.

Id Integer Optional. Assigned to each error.

Code String Error code.

message String Optional. Human readable error
message.

List of common errors codes and messages for all POST parameters

Below are commmon error codes for POST parameters. These will validate if any required
POST parameter is missing, if it is null, length and size of the parameters etc.
Same error code can be used for more than one POST parameter.

2001 INVALID_%field_name% %field_name% is required
2002 INVALID_%field_name% %field_name% should not be null
2003 INVALID_%field_name% %field_name% should not be blank
. %field_name% should be at least
2004 INVALID_%field_name% %error_value% characters long.
2005 INVALID %field % %field_name% should not be more than
—CTIEIG_NANE0 %error_value% characters.
2006 INVALID_%field_name% String is invalid
2007 INVALID_%field_name% Email is invalid
2008 INVALID_%field_name% Avalid integer is required
5009 INVALID._ %field._name% The valueshould be equal
orless than %error_value%
. The value should be equal or more than
(o) O,
2010 INVALID_%field_name% %error value%
201 INVALID_%field_name% Too large string value

In the above table “%field_name%" can be any expected parameter that must be sent in the
POST data. For example, let us take below POST data.

{"api_key”:"lpghjl4v5apt2bks”, “username”:"test user",”password”:"testl1234",”transaction_ id”:1234}

In case, API caller is not sending the ‘transaction_id’ in POST data, RGS API would send below error
message to the caller.

{”error”:1, "error detail”: {”id”:2001,"”code”:"INVALID TRANSACTION ID",
"message” : "Transactionid is required."}}

error ‘code’ would be ‘INVALID_' followed by missing parameter name in capitalsi.e.
‘INVALID_TRANSACTION_ID' and ‘message’ would be ‘parameter name without underscore, words
separated by space’ and followed by ‘is required. i.e. ‘Transaction id is required'.

m “Code"” Interpretation “Message” Sample Value

INVALID_%field_name% will be “%field_name% is required.” will
2001 interpreted as INVALID_TRANSACTION_ID be interpreted as “Transaction id is required.”

INVALID. %field._narme% will be “%field_name% should not be null”

2002 interpreted as INVALID_TRANSACTION_ID ~ Will be interpreted as
“Transaction id should not be null.”

“%field_name% should not be blank.”
will be interpreted as
“Transaction id should not be blank.”

INVALID_%field_name% will be
2003 interpreted as INVALID_TRANSCTION_ID

Same is the case with all the POST parameters that fall into the above validation criteria from id 2001 to
20T11.

List of Error codes and messages
(Excluding commmon code and message)

oo e

2012 INVALID_LOGIN_CREDENTIALS Unable to login with credentials provided.
2013 INVALID_LOGIN_CREDENTIALS Must include username and password.
2014 INVALID_LOGIN_CREDENTIALS User does not belong to this website.
2015 INVALID_API_KEY API Key is invalid

20716 INVALID_SESSION_ID Invalid session ID.

2017 INVALID_PROVIDER Invalid provider.

2018 INVALID_GAME_TYPE Invalid game type.

o e

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

INVALID_LOGIN_CREDENTIALS

INVALID_LOGIN_CREDENTIALS

INVALID_LOGIN_CREDENTIALS

INVALID_API_KEY

INVALID_SESSION_ID

INVALID_PROVIDER

INVALID_CGAME_TYPE

INVALID_PLATFORM

INVALID_PLATFORM

INVALID_PLAYER_ID

INVALID_CAME_ID

INVALID_LANGUAGE

INVALID_USERNAME

CURRENT_NEW_PASSWORD_SAME

INVALID_CURRENCY

NEGATIVE_AMOUNT_VALUE

INSUFFICIENT_BALANCE

INVALID_STARTDATE_ENDDATE

INVALID_AMOUNT_VALUE

DUPLICATE_SESSION_ID

Invalid platform.

Invalid amount type.

Invalid player ID.

Invalid game ID.

Invalid language.

Invalid username.

Current & new password should not be same.

Invalid currency.

Amount should be positive value.

Invalid player ID

Invalid game ID

Invalid language

Invalid username

Current and new password should not be same

Invalid currency

Amount should be positive value

Insufficient balance

Start date should no be greater than end date

Amount should be less than balance

Duplicate session 1D

o e

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2049

2050

2051

2052

2053

3003

OPERATOR_AUTHENTICATION_FAIL

CURRENCY_MISMATCH

ZERO_AMOUNT_VALUE

FALIED_TRANS

INVALID_FROM_DATE

INVALID_TIME_INTERVAL

INVALID_MONETARY_TYPE

BALANCE_AMOUNT_EXPIRED

INVALID_TRANSACTION_TYPE

DUPLICATE_TRANSACTION_ID

DUPLICATE_PROMO_BONUS_ID

INVALID_ROUND_OR_ROUND
_BET_VALUE

INVALID_CURRENCY_COUNT

INVALID_NUM_ROUND_COUNT

INVALID_COIN_VALUES_COUNT IN

INVALID_ROUND_TOTAL
_BET_COUNT

INVALID_COIN_VALUE

EXTERNAL_GCATEWAY_FAULT

Authentication with operator failed.

Player currency mismatch between
operator and opus.

Amount should be more than zero.

Transaction not found or failed.

From date is greater than to date.

Time interval is more than the allowed one.

Invalid monetary type.

Balance amount is expired.

Invalid transaction type.

Duplicate transaction ID.

Duplicate promo bonus ID.

Invalid round or round_bet value.

Currency count should match
with player count

Number of rounds count should match
with game_ids count

Coin values count should match
with game ids count

Round total bet count should match
with game_ids count

Invalid coin values

Invalid JSON response from operator.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

